Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
EJNMMI Res ; 14(1): 7, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38206500

RESUMO

BACKGROUND: Cardiac repair and remodeling following myocardial infarction (MI) is a multifactorial process involving pro-reparative inflammation, angiogenesis and fibrosis. Noninvasive imaging using a radiotracer targeting these processes could be used to elucidate cardiac wound healing mechanisms. The alpha7 nicotinic acetylcholine receptor (ɑ7nAChR) stimulates pro-reparative macrophage activity and angiogenesis, making it a potential imaging biomarker in this context. We investigated this by assessing in vitro cellular expression of ɑ7nAChR, and by using a tritiated version of the PET radiotracer [18F]NS14490 in tissue autoradiography studies. RESULTS: ɑ7nAChR expression in human monocyte-derived macrophages and vascular cells showed the highest relative expression was within macrophages, but only endothelial cells exhibited a proliferation and hypoxia-driven increase in expression. Using a mouse model of inflammatory angiogenesis following sponge implantation, specific binding of [3H]NS14490 increased from 3.6 ± 0.2 µCi/g at day 3 post-implantation to 4.9 ± 0.2 µCi/g at day 7 (n = 4, P < 0.01), followed by a reduction at days 14 and 21. This peak matched the onset of vessel formation, macrophage infiltration and sponge fibrovascular encapsulation. In a rat MI model, specific binding of [3H]NS14490 was low in sham and remote MI myocardium. Specific binding within the infarct increased from day 14 post-MI (33.8 ± 14.1 µCi/g, P ≤ 0.01 versus sham), peaking at day 28 (48.9 ± 5.1 µCi/g, P ≤ 0.0001 versus sham). Histological and proteomic profiling of ɑ7nAChR positive tissue revealed strong associations between ɑ7nAChR and extracellular matrix deposition, and rat cardiac fibroblasts expressed ɑ7nAChR protein under normoxic and hypoxic conditions. CONCLUSION: ɑ7nAChR is highly expressed in human macrophages and showed proliferation and hypoxia-driven expression in human endothelial cells. While NS14490 imaging displays a pattern that coincides with vessel formation, macrophage infiltration and fibrovascular encapsulation in the sponge model, this is not the case in the MI model where the ɑ7nAChR imaging signal was strongly associated with extracellular matrix deposition which could be explained by ɑ7nAChR expression in fibroblasts. Overall, these findings support the involvement of ɑ7nAChR across several processes central to cardiac repair, with fibrosis most closely associated with ɑ7nAChR following MI.

3.
Cell Mol Life Sci ; 80(8): 210, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37460898

RESUMO

Dysregulated autophagy is associated with cardiovascular and metabolic diseases, where impaired flow-mediated endothelial cell responses promote cardiovascular risk. The mechanism by which the autophagy machinery regulates endothelial functions is complex. We applied multi-omics approaches and in vitro and in vivo functional assays to decipher the diverse roles of autophagy in endothelial cells. We demonstrate that autophagy regulates VEGF-dependent VEGFR signaling and VEGFR-mediated and flow-mediated eNOS activation. Endothelial ATG5 deficiency in vivo results in selective loss of flow-induced vasodilation in mesenteric arteries and kidneys and increased cerebral and renal vascular resistance in vivo. We found a crucial pathophysiological role for autophagy in endothelial cells in flow-mediated outward arterial remodeling, prevention of neointima formation following wire injury, and recovery after myocardial infarction. Together, these findings unravel a fundamental role of autophagy in endothelial function, linking cell proteostasis to mechanosensing.


Assuntos
Células Endoteliais , Infarto do Miocárdio , Humanos , Autofagia , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Artérias Mesentéricas/metabolismo , Infarto do Miocárdio/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Transdução de Sinais , Vasodilatação , Animais , Camundongos
4.
PLoS One ; 18(3): e0255709, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36940215

RESUMO

Glucocorticoids inhibit angiogenesis by activating the glucocorticoid receptor. Inhibition of the glucocorticoid-activating enzyme 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) reduces tissue-specific glucocorticoid action and promotes angiogenesis in murine models of myocardial infarction. Angiogenesis is important in the growth of some solid tumours. This study used murine models of squamous cell carcinoma (SCC) and pancreatic ductal adenocarcinoma (PDAC) to test the hypothesis that 11ß-HSD1 inhibition promotes angiogenesis and subsequent tumour growth. SCC or PDAC cells were injected into female FVB/N or C57BL6/J mice fed either standard diet, or diet containing the 11ß-HSD1 inhibitor UE2316. SCC tumours grew more rapidly in UE2316-treated mice, reaching a larger (P<0.01) final volume (0.158 ± 0.037 cm3) than in control mice (0.051 ± 0.007 cm3). However, PDAC tumour growth was unaffected. Immunofluorescent analysis of SCC tumours did not show differences in vessel density (CD31/alpha-smooth muscle actin) or cell proliferation (Ki67) after 11ß-HSD1 inhibition, and immunohistochemistry of SCC tumours did not show changes in inflammatory cell (CD3- or F4/80-positive) infiltration. In culture, the growth/viability (assessed by live cell imaging) of SCC cells was not affected by UE2316 or corticosterone. Second Harmonic Generation microscopy showed that UE2316 reduced Type I collagen (P<0.001), whilst RNA-sequencing revealed that multiple factors involved in the innate immune/inflammatory response were reduced in UE2316-treated SCC tumours. 11ß-HSD1 inhibition increases SCC tumour growth, likely via suppression of inflammatory/immune cell signalling and extracellular matrix deposition, but does not promote tumour angiogenesis or growth of all solid tumours.


Assuntos
Glucocorticoides , Neoplasias , Camundongos , Feminino , Animais , Glucocorticoides/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Inflamação , Neovascularização Patológica , Fibrose
5.
Cardiovasc Res ; 118(11): 2519-2534, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34528097

RESUMO

AIMS: Endothelial cell (EC) dysfunction drives the initiation and pathogenesis of pulmonary arterial hypertension (PAH). We aimed to characterize EC dynamics in PAH at single-cell resolution. METHODS AND RESULTS: We carried out single-cell RNA sequencing (scRNA-seq) of lung ECs isolated from an EC lineage-tracing mouse model in Control and SU5416/hypoxia-induced PAH conditions. EC populations corresponding to distinct lung vessel types, including two discrete capillary populations, were identified in both Control and PAH mice. Differential gene expression analysis revealed global PAH-induced EC changes that were confirmed by bulk RNA-seq. This included upregulation of the major histocompatibility complex class II pathway, supporting a role for ECs in the inflammatory response in PAH. We also identified a PAH response specific to the second capillary EC population including upregulation of genes involved in cell death, cell motility, and angiogenesis. Interestingly, four genes with genetic variants associated with PAH were dysregulated in mouse ECs in PAH. To compare relevance across PAH models and species, we performed a detailed analysis of EC heterogeneity and response to PAH in rats and humans through whole-lung PAH scRNA-seq datasets, revealing that 51% of up-regulated mouse genes were also up-regulated in rat or human PAH. We identified promising new candidates to target endothelial dysfunction including CD74, the knockdown of which regulates EC proliferation and barrier integrity in vitro. Finally, with an in silico cell ordering approach, we identified zonation-dependent changes across the arteriovenous axis in mouse PAH and showed upregulation of the Serine/threonine-protein kinase Sgk1 at the junction between the macro- and microvasculature. CONCLUSION: This study uncovers PAH-induced EC transcriptomic changes at a high resolution, revealing novel targets for potential therapeutic candidate development.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Animais , Células Endoteliais/metabolismo , Hipertensão Pulmonar Primária Familiar/metabolismo , Humanos , Camundongos , Hipertensão Arterial Pulmonar/genética , Artéria Pulmonar , Ratos , Análise de Sequência de RNA
6.
Front Cardiovasc Med ; 8: 719031, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34485416

RESUMO

Heart failure, which is responsible for a high number of deaths worldwide, can develop due to chronic hypertension. Heart failure can involve and progress through several different pathways, including: fibrosis, inflammation, and angiogenesis. Early and specific detection of changes in the myocardium during the transition to heart failure can be made via the use of molecular imaging techniques, including positron emission tomography (PET). Traditional cardiovascular PET techniques, such as myocardial perfusion imaging and sympathetic innervation imaging, have been established at the clinical level but are often lacking in pathway and target specificity that is important for assessment of heart failure. Therefore, there is a need to identify new PET imaging markers of inflammation, fibrosis and angiogenesis that could aid diagnosis, staging and treatment of hypertensive heart failure. This review will provide an overview of key mechanisms underlying hypertensive heart failure and will present the latest developments in PET probes for detection of cardiovascular inflammation, fibrosis and angiogenesis. Currently, selective PET probes for detection of angiogenesis remain elusive but promising PET probes for specific targeting of inflammation and fibrosis are rapidly progressing into clinical use.

7.
J Virol ; 95(22): e0038721, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34469243

RESUMO

Preexisting immune responses toward adenoviral vectors limit the use of a vector based on particular serotypes and its clinical applicability for gene therapy and/or vaccination. Therefore, there is a significant interest in vectorizing novel adenoviral types that have low seroprevalence in the human population. Here, we describe the discovery and vectorization of a chimeric human adenovirus, which we call HAdV-20-42-42. Full-genome sequencing revealed that this virus is closely related to human serotype 42, except for the penton base, which is derived from serotype 20. The HAdV-20-42-42 vector could be propagated stably to high titers on existing E1-complementing packaging cell lines. Receptor-binding studies revealed that the vector utilized both CAR and CD46 as receptors for cell entry. Furthermore, the HAdV-20-42-42 vector was potent in transducing human and murine cardiovascular cells and tissues, irrespective of the presence of blood coagulation factor X. In vivo characterizations demonstrate that when delivered intravenously (i.v.) in mice, HAdV-20-42-42 mainly targeted the lungs, liver, and spleen and triggered robust inflammatory immune responses. Finally, we demonstrate that potent T-cell responses against vector-delivered antigens could be induced upon intramuscular vaccination in mice. In summary, from the data obtained we conclude that HAdV-20-42-42 provides a valuable addition to the portfolio of adenoviral vectors available to develop efficacious products in the fields of gene therapy and vaccination. IMPORTANCE Adenoviral vectors are under investigation for a broad range of therapeutic indications in diverse fields, such as oncology and gene therapy, as well as for vaccination both for human and veterinary use. A wealth of data shows that preexisting immune responses may limit the use of a vector. Particularly in the current climate of global pandemic, there is a need to expand the toolbox with novel adenoviral vectors for vaccine development. Our data demonstrate that we have successfully vectorized a novel adenovirus type candidate with low seroprevalence. The cell transduction data and antigen-specific immune responses induced in vivo demonstrate that this vector is highly promising for the development of gene therapy and vaccine products.


Assuntos
Adenovírus Humanos , Terapia Genética/métodos , Vetores Genéticos , Desenvolvimento de Vacinas/métodos , Células A549 , Adenovírus Humanos/genética , Adenovírus Humanos/imunologia , Animais , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Células HEK293 , Humanos , Masculino , Camundongos , Estudos Soroepidemiológicos
8.
Int J Mol Sci ; 22(14)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34299240

RESUMO

Glucocorticoids are steroid hormones with key roles in the regulation of many physiological systems including energy homeostasis and immunity. However, chronic glucocorticoid excess, highlighted in Cushing's syndrome, is established as being associated with increased cardiovascular disease (CVD) risk. Atherosclerosis is the major cause of CVD, leading to complications including coronary artery disease, myocardial infarction and heart failure. While the associations between glucocorticoid excess and increased prevalence of these complications are well established, the mechanisms underlying the role of glucocorticoids in development of atheroma are unclear. This review aims to better understand the importance of glucocorticoids in atherosclerosis and to dissect their cell-specific effects on key processes (e.g., contractility, remodelling and lesion development). Clinical and pre-clinical studies have shown both athero-protective and pro-atherogenic responses to glucocorticoids, effects dependent upon their multifactorial actions. Evidence indicates regulation of glucocorticoid bioavailability at the vasculature is complex, with local delivery, pre-receptor metabolism, and receptor expression contributing to responses linked to vascular remodelling and inflammation. Further investigations are required to clarify the mechanisms through which endogenous, local glucocorticoid action and systemic glucocorticoid treatment promote/inhibit atherosclerosis. This will provide greater insights into the potential benefit of glucocorticoid targeted approaches in the treatment of cardiovascular disease.


Assuntos
Aterosclerose/tratamento farmacológico , Aterosclerose/fisiopatologia , Glucocorticoides/farmacologia , Aterosclerose/metabolismo , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/fisiopatologia , Síndrome de Cushing , Glucocorticoides/metabolismo , Humanos , Inflamação/tratamento farmacológico , Receptores de Glucocorticoides/metabolismo , Fatores de Risco
9.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33924852

RESUMO

Sex differences in cardiovascular disease (CVD), including aortic stenosis, atherosclerosis and cardiovascular calcification, are well documented. High levels of testosterone, the primary male sex hormone, are associated with increased risk of cardiovascular calcification, whilst estrogen, the primary female sex hormone, is considered cardioprotective. Current understanding of sexual dimorphism in cardiovascular calcification is still very limited. This review assesses the evidence that the actions of sex hormones influence the development of cardiovascular calcification. We address the current question of whether sex hormones could play a role in the sexual dimorphism seen in cardiovascular calcification, by discussing potential mechanisms of actions of sex hormones and evidence in pre-clinical research. More advanced investigations and understanding of sex hormones in calcification could provide a better translational outcome for those suffering with cardiovascular calcification.


Assuntos
Androgênios/fisiologia , Estrogênios/fisiologia , Doenças das Valvas Cardíacas/etiologia , Calcificação Vascular/etiologia , Animais , Modelos Animais de Doenças , Doenças das Valvas Cardíacas/metabolismo , Humanos , Transdução de Sinais , Calcificação Vascular/metabolismo
12.
Front Cardiovasc Med ; 8: 795823, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35097015

RESUMO

Background: Critical limb ischaemia (CLI), which is estimated to affect 2 million people in the United States, reduces quality of life, is associated with high morbidity and mortality, and has limited treatment options. Direct stimulation of angiogenesis using proangiogenic growth factors has been investigated as a therapeutic strategy to improve reperfusion in the ischaemic leg. Despite positive outcomes in animal studies, there has been little success in clinical translation. This investigation addressed the hypothesis that angiogenesis could be stimulated indirectly in the ischaemic hindlimb by blocking 11ß-hydroxysteroid dehydrogenase 1 (11ßHSD1)-mediated reactivation of anti-angiogenic glucocorticoids. Method and Results: Corticosterone suppressed ex vivo angiogenesis in the mouse aortic ring assay. 11ßHSD1 deletion (Hsd11b1Del1/Del1) or pharmacological inhibition (with 300 nM UE2316) which block the reactivation of glucocorticoid (i.e., the conversion of 11-dehydrocorticosterone (11DHC) to bioactive corticosterone) significantly reduced 11DHC-induced suppression of angiogenesis. In a sponge implantation model, 11ßHSD1 deletion, but not pharmacological inhibition, enhanced inflammation-induced angiogenesis. By contrast, in the mouse hindlimb ischaemia model, post-ischaemic reperfusion and vascular density were not affected by either deletion or pharmacological inhibition of 11ßHSD1 in young or aged mice. 3D vascular imaging suggested that hind limb reperfusion in the 1st week following induction of ischaemia may be driven by the rapid expansion of collateral arteries rather than by angiogenesis. Conclusion: 11ßHSD1-mediated glucocorticoid reactivation suppressed angiogenesis ex vivo and in vivo. However, regulation of angiogenesis alone was insufficient to promote reperfusion in hindlimb ischaemia. Future investigation of post-ischaemic reperfusion should include other aspects of systemic vascular remodeling including arteriogenesis and collateral formation.

14.
Eur Heart J Cardiovasc Imaging ; 21(6): 673-682, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31408105

RESUMO

AIMS: Cardiovascular thrombosis is responsible a quarter of deaths annually worldwide. Current imaging methods for cardiovascular thrombosis focus on anatomical identification of thrombus but cannot determine thrombus age or activity. Molecular imaging techniques hold promise for identification and quantification of thrombosis in vivo. Our objective was to assess a novel optical and positron-emitting probe targeting Factor XIIIa (ENC2015) as biomarker of active thrombus formation. METHODS AND RESULTS: Optical and positron-emitting ENC2015 probes were assessed ex vivo using blood drawn from human volunteers and passed through perfusion chambers containing denuded porcine aorta as a model of arterial injury. Specificity of ENC2015 was established with co-infusion of a factor XIIIa inhibitor. In vivo18F-ENC2015 biodistribution, kinetics, radiometabolism, and thrombus binding were characterized in rats. Both Cy5 and fluorine-18 labelled ENC2015 rapidly and specifically bound to thrombi. Thrombus uptake was inhibited by a factor XIIIa inhibitor. 18F-ENC2015 remained unmetabolized over 8 h when incubated in ex vivo human blood. In vivo, 42% of parent radiotracer remained in blood 60 min post-administration. Biodistribution studies demonstrated rapid clearance from tissues with elimination via the urinary system. In vivo,18F-ENC2015 uptake was markedly increased in the thrombosed carotid artery compared to the contralateral patent artery (mean standard uptake value ratio of 2.40 vs. 0.74, P < 0.0001). CONCLUSION: ENC2015 rapidly and selectively binds to acute thrombus in both an ex vivo human translational model and an in vivo rodent model of arterial thrombosis. This probe holds promise for the non-invasive identification of thrombus formation in cardiovascular disease.


Assuntos
Fator XIIIa , Trombose , Animais , Fibrina/metabolismo , Imagem Molecular , Ratos , Suínos , Trombose/diagnóstico por imagem , Distribuição Tecidual
16.
J Physiol ; 597(3): 767-780, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30537108

RESUMO

KEY POINTS: Type 1 diabetes mellitus increases cardiovascular risk; hypertension amplifies this risk, while pressure natriuresis regulates long-term blood pressure. We induced type 1 diabetes in rats by streptozotocin injection and demonstrated a substantial impairment of pressure natriuresis: acute increases in blood pressure did not increase renal medullary blood flow, tubular sodium reabsorption was not downregulated, and proximal tubule sodium reabsorption, measured by lithium clearance, was unaffected. Insulin reduced blood glucose in diabetic rats, and rescued the pressure natriuresis response without influencing lithium clearance, but did not restore medullary blood flow. Radiotelemetry showed that diastolic blood pressure was increased in diabetic rats, and its diurnal variation was reduced. Increases in medullary blood flow and decreases in distal tubule sodium reabsorption that offset acute rises in BP are impaired in early type 1 diabetes, and this impairment could be a target for preventing hypertension in type 1 diabetes. ABSTRACT: Type 1 diabetes mellitus (T1DM) substantially increases cardiovascular risk, and hypertension amplifies this risk. Blood pressure (BP) and body sodium homeostasis are linked. T1DM patients have increased total exchangeable sodium, correlating directly with BP. Pressure natriuresis is an important physiological regulator of BP. We hypothesised that pressure natriuresis would be impaired, and BP increased, in the early phase of T1DM. Male Sprague-Dawley rats were injected with streptozotocin (30-45 mg/kg) or citrate vehicle. After 3 weeks, pressure natriuresis was induced by serial arterial ligation. In non-diabetic controls, this increased fractional excretion of sodium from ∼1% to ∼25% of the filtered load (P < 0.01); in T1DM rats, the response was significantly blunted, peaking at only ∼3% (P < 0.01). Mechanistically, normal lithium clearance suggested that distal tubule sodium reabsorption was not downregulated with increased BP in T1DM rats. The pressure dependence of renal medullary perfusion, considered a key factor in the integrated response, was abolished. Insulin therapy rescued the natriuretic response in diabetic rats, restoring normal downregulation of tubular sodium reabsorption when BP was increased. However, the pressure dependence of medullary perfusion was not restored, suggesting persistent vascular dysfunction despite glycaemic control. Radiotelemetry showed that T1DM did not affect systolic BP, but mean diastolic BP was ∼5 mmHg higher than in non-diabetic controls (P < 0.01), and normal diurnal variation was reduced. In conclusion, functional impairment of renal sodium and BP homeostasis is an early manifestation of T1DM, preceding hypertension and nephropathy. Early intervention to restore pressure natriuresis in T1DM may complement reductions in cardiovascular risk achieved with glycaemic control.


Assuntos
Pressão Sanguínea/fisiologia , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 1/fisiopatologia , Natriurese/fisiologia , Animais , Glicemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Regulação para Baixo/fisiologia , Hemodinâmica/fisiologia , Hipertensão/fisiopatologia , Rim/metabolismo , Rim/fisiopatologia , Lítio/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Circulação Renal/fisiologia , Sódio/metabolismo
17.
Br J Cancer ; 119(12): 1508-1517, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30374123

RESUMO

BACKGROUND: The Wilms' tumour protein (WT1), which influences tumour development and angiogenesis, is a promising therapeutic target in breast cancer. We hypothesised that WT1 expression would vary in endothelial cells in distinct sub-classifications of breast cancer. METHODS: WT1 expression and vascular density were quantified by immunohistochemical analysis of human (n = 57) and murine breast cancers. Human tumours were sub-classified by histopathological grade, ER status and HER2 enrichment. RESULTS: WT1 was identified in endothelial (and epithelial and smooth muscle) cells in tumours and tumour-free tissues (controls) from patients and mice with breast cancer. WT1 expression was higher in tumours than in controls, but this was not due to increased endothelial WT1. Vascular WT1 in cancers decreased as histopathological grade increased. WT1 was higher in ER-positive versus ER-negative cancers. Strikingly, reduced WT1 expression in controls correlated with an increased Nottingham Prognostic Index score. CONCLUSIONS: Expression of WT1 is increased in breast cancers but this is not limited to the vascular compartment. The association between reduced WT1 in tumour-free tissue and poor prognosis suggests a protective role for WT1 in the healthy breast.


Assuntos
Neoplasias da Mama/patologia , Proteínas WT1/análise , Animais , Neoplasias da Mama/irrigação sanguínea , Neoplasias da Mama/química , Neoplasias da Mama/mortalidade , Feminino , Humanos , Camundongos , Gradação de Tumores , Receptor ErbB-2/análise , Receptores de Estrogênio/análise , Proteínas WT1/fisiologia
18.
Endocrinology ; 159(11): 3791-3800, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30289445

RESUMO

Equine Cushing disease [pituitary pars intermedia dysfunction (PPID)] is a common condition of older horses, but its pathophysiology is complex and poorly understood. In contrast to pituitary-dependent hyperadrenocorticism in other species, PPID is characterized by elevated plasma ACTH but not elevated plasma cortisol. In this study, we address this paradox and the hypothesis that PPID is a syndrome of ACTH excess in which there is dysregulation of peripheral glucocorticoid metabolism and binding. In 14 horses with PPID compared with 15 healthy controls, we show that in plasma, cortisol levels and cortisol binding to corticosteroid binding globulin were not different; in urine, glucocorticoid and androgen metabolites were increased up to fourfold; in liver, 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) expression was reduced; in perirenal adipose tissue, 11ß-HSD1 and carbonyl reductase 1 expression was increased; and tissue cortisol levels were not measurably different. The combination of normal plasma cortisol with markedly enhanced urinary cortisol metabolite excretion and dysregulated tissue-specific steroid-metabolizing enzymes suggests that cortisol clearance is increased in horses with PPID. We infer that the ACTH excess may be compensatory and pituitary pathology and autonomous secretion may be a secondary rather than primary pathology. It is possible that successful therapy in PPID may be targeted either at lowering ACTH or, paradoxically, at reducing cortisol clearance.


Assuntos
Hormônio Adrenocorticotrópico/metabolismo , Doenças dos Cavalos/metabolismo , Hidrocortisona/metabolismo , Hipersecreção Hipofisária de ACTH/veterinária , Adeno-Hipófise Parte Intermédia/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Tecido Adiposo/metabolismo , Androgênios/metabolismo , Androgênios/urina , Animais , Carbonil Redutase (NADPH)/metabolismo , Estudos de Casos e Controles , Glucocorticoides/metabolismo , Glucocorticoides/urina , Cavalos , Hidrocortisona/urina , Fígado/metabolismo , Hipersecreção Hipofisária de ACTH/metabolismo , Transcortina/metabolismo
19.
Sci Rep ; 8(1): 11532, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30068994

RESUMO

Leukemia inhibitory factor (LIF), a pleiotropic cytokine belonging to the interleukin-6 family, is most often noted for its role in maintaining the balance between stem cell proliferation and differentiation. In rodents, LIF is expressed in both the fetal and adult testis; with the peritubular myoid (PTM) cells thought to be the main site of production. Given their anatomical location, LIF produced by PTM cells may act both on intratubular and interstitial cells to influence spermatogenesis and steroidogenesis respectively. Indeed, the leukemia inhibitory factor receptor (LIFR) is expressed in germ cells, Sertoli cells, Leydig cells, PTM cells and testicular macrophages, suggesting that LIF signalling via LIFR may be a key paracrine regulator of testicular function. However, a precise role(s) for testicular LIFR-signalling in vivo has not been established. To this end, we generated and characterised the testicular phenotype of mice lacking LIFR either in germ cells, Sertoli cells or both, to identify a role for LIFR-signalling in testicular development/function. Our analyses reveal that LIFR is dispensable in germ cells for normal spermatogenesis. However, Sertoli cell LIFR ablation results in a degenerative phenotype, characterised by abnormal germ cell loss, sperm stasis, seminiferous tubule distention and subsequent atrophy of the seminiferous tubules.


Assuntos
Subunidade alfa de Receptor de Fator Inibidor de Leucemia/metabolismo , Células de Sertoli/metabolismo , Espermatogênese , Testículo/fisiologia , Animais , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/deficiência , Masculino , Camundongos , Camundongos Knockout
20.
Mol Ther ; 26(7): 1669-1684, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29703701

RESUMO

Pluripotent stem cell-derived differentiated endothelial cells offer high potential in regenerative medicine in the cardiovascular system. With the aim of translating the use of a human stem cell-derived endothelial cell product (hESC-ECP) for treatment of critical limb ischemia (CLI) in man, we report a good manufacturing practice (GMP)-compatible protocol and detailed cell tracking and efficacy data in multiple preclinical models. The clinical-grade cell line RC11 was used to generate hESC-ECP, which was identified as mostly endothelial (60% CD31+/CD144+), with the remainder of the subset expressing various pericyte/mesenchymal stem cell markers. Cell tracking using MRI, PET, and qPCR in a murine model of limb ischemia demonstrated that hESC-ECP was detectable up to day 7 following injection. Efficacy in several murine models of limb ischemia (immunocompromised/immunocompetent mice and mice with either type I/II diabetes mellitus) demonstrated significantly increased blood perfusion and capillary density. Overall, we demonstrate a GMP-compatible hESC-ECP that improved ischemic limb perfusion and increased local angiogenesis without engraftment, paving the way for translation of this therapy.


Assuntos
Células Endoteliais/citologia , Membro Posterior/citologia , Isquemia/terapia , Neovascularização Fisiológica/fisiologia , Animais , Biomarcadores/metabolismo , Diferenciação Celular/fisiologia , Linhagem Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Células Endoteliais/metabolismo , Membro Posterior/metabolismo , Humanos , Isquemia/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Pericitos/citologia , Pericitos/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Transplante de Células-Tronco/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...